EXAM GROUP THEORY

April 15, 2005

- Write your name and student number on the first page.
- Start each problem on a new page.
- Answers should be brief, to the point, yet complete.
- Illegible writing will be graded as incorrect.
- Deadline for handing in the exam is Monday, April 25, 5 p.m.

Problem 1 (20 points).

a. Consider the following Cayley table:

G?	e	a	b	c	d	f
\overline{e}	e	\overline{a}	b	С	d	f
a	a	b	e	d	f	C
b	b	e	a	f	c	d
c	c	d	f	d f a	e	b
d	d	f	C	b	a	e
f	f	C	d	$\frac{b}{e}$	b	a

With this product, is the set $\{e, a, b, c, d, f\}$ a group? If so, is there a subgroup? If not, is there a subset which does form a group?

- **b**. Give the elements of the permutation group S_3 in cycle notation. Give the subgroups and their cosets. Find the conjugation classes.
- c. For S_3 , draw the Young diagrams for the different classes. Draw the corresponding hook tableaux and give the hook products. Draw all the standard Young tableaux and give their Yamanouchi symbols.
- d. Discuss the parameter space of SO(3). What changes for SU(2)?
- e. What is a Casimir operator? Why are they useful? Give the Casimir operators of SO(3), SU(2), SU(3), and the Lorentz and Poincaré groups. How many Casimir operators do SO(4) and SU(4) have?
- f. Determine the dimension of the SU(n) irreps given by:

$$[3] =$$
 , $[21] =$, $[1^3] =$, $[2^2] =$.

To which SU(2) and to which SU(3) irreps do they correspond?

g. Using Young diagrams, prove that for SU(3):

$$\{3\} \otimes \{3\} \otimes \{3\} = \{10\} \oplus \{8\} \oplus \{8\} \oplus \{1\}$$
.

Using Young diagrams, reduce for SU(4):

$$\{\mathbf{4}\} \otimes \{\mathbf{4}\} \quad \text{and} \quad \{\mathbf{4}\} \otimes \{\mathbf{4^*}\}$$
 .

Problem 2 (15 points).

Consider the rotation group SO(3). A rotation is given by $R(n) = R(\varphi \hat{n})$, where φ is the rotation angle and \hat{n} a unit vector along the rotation axis.

a. Prove that rotations over the same angle around different axes are conjugate. That is, when a' = R(n)a, show that

$$R(\boldsymbol{a}') = R(\boldsymbol{n})R(\boldsymbol{a})R^{-1}(\boldsymbol{n}) .$$

A finite rotation can be written in terms of Euler angles as

$$D(\varphi, \theta, \chi) = e^{-i\varphi L_z} e^{-i\theta L_y} e^{-i\chi L_z} .$$

b. Show that for the irrep labelled by ℓ , the character of the class parametrized by the rotation angle φ is

$$\chi^{(\ell)}(\varphi) = \frac{\sin(2\ell+1)\varphi/2}{\sin\varphi/2} .$$

An atom with a valence electron in a d-state ($\ell = 2$) is put in a crystal environment with the symmetry of the octahedral group O (we ignore spin). O is the direct (*i.e.* only rotations) symmetry group of the octahedron and the cube; n(O) = 24. The incomplete character table of O is:

O	?€	? \mathcal{C}_3	$3C_4^2$	$6C_2$	$6C_4$
$\overline{A_1}$?	?	?	?	?
A_2	?	?	?	?	-1
E	?	-1	2	?	?
F_1	?	0	?	?	?
F_2	?	?	?	?	?

- c. Complete the character table. Explain! In a picture of an octahedron and a cube, draw for each of the classes one of the rotation axes.
- d. Calculate the splitting of the five-fold ($\ell = 2$) degenerate energy level. For each resulting level give the remaining degeneracy.

The crystal is subjected to a perturbation with symmetry D_3 , with the three-fold axis coinciding with one of those of O.

e. Construct the character table of D_3 . Derive which, if any, further splitting of the energy levels is caused by this perturbation.

Problem 3 (15 points).

integer l

The Hamiltonian for the isotropic 3D harmonic oscillator is

$$H_0 = p^2/2m + m\,\omega^2 r^2/2 \ ,$$

with $\mathbf{r} = (x_1, x_2, x_3)$ and $[x_i, p_j] = i\hbar \delta_{ij}$. The energy levels are given by

$$E_{n\ell} = (2n + \ell - 1/2) \hbar \omega$$
, $n = 1, 2, \dots \ell = 0, 1, \dots$

With N the degeneracy of the levels and P their parity, we get:

$E/\hbar\omega$	$n\ell$	N	P	
3/2	1s	1	+	
5/2	1p	3	_	etc.
7/2	2s, 1d	6	+	ete.
9/2	2p, 1f	10	_	
11/2	3s, 2d, 1g	15	+	

a. Discuss the degeneracy of the energy levels, and compare to what would be expected on the basis of spherical symmetry.

Assuming this degeneracy is not "accidental," we search for a group G, such that every degenerate energy level corresponds to *one* irrep of G.

 \boldsymbol{b} . Explain why the group G must have SO(3) as a subgroup. Define the new variables,

$$\mathbf{R} = (X_1, X_2, X_3) = \sqrt{m\omega/\hbar} \mathbf{r}$$
 , $\mathbf{P} = \mathbf{p}/\sqrt{m\hbar\omega}$, $H_0 = \hbar\omega H$.

The generators of SO(3) are $L_i = \varepsilon_{ijk} X_j P_k$. To complete the Lie algebra of G, we have to find additional generators of G that connect the different values of ℓ within the same energy level.

c. Express H in terms of R and P and calculate the commutator $[X_i, P_j]$. Show that the operators $X_iX_j + P_iP_j$ commute with H. Construct a 2nd-rank irreducible SO(3) tensor Q_{ij} that commutes with H.

The set L_i and Q_{ij} is closed under the Lie product, and forms a basis of an 8D Lie algebra.

- d. What is the corresponding well-known eight-parameter Lie group G?

 Looking back at the table, which irreps of G are realized only? If we include also H in the Lie algebra, it becomes 9D. What is now G?
- e. Find the correspondence between the operators L_i , Q_{ij} and the standard basis of the Lie algebra of the conjectured group G.